

GRUNDWISSEN MATHEMATIK

7. BIS 11. JAHRGANGSSTUFE

Inhalt

Grundwissen Analysis

1	Funktionen und Gleichungen	7./8. Klasse
2	Lineare Funktionen und Gleichungen	7./8. Klasse
3	Gebrochen-rationale Funktionen	8. Klasse
4	Quadratische Funktionen & Gleichungen	9. Klasse
5	Potenzfunktionen und Wurzeln	9. Klasse
6	Sinus und Kosinus	9./10. Klasse
7	Exponentialfunktion und Logarithmus	10. Klasse
8	Grenzwerte und Transformationen	11. Klasse
9	Differenzieren	11. Klasse

Grundwissen Stochastik

10 Wahrscheinlichkeit 8.-11. Klasse

Grundwissen Geometrie

11 Figuren und Körper 6.-10. Klasse

Version Oktober 2024, Bildnachweis: Pixabay

© 2024|Bernhard|Nürnberg

Funktion

Eine Funktion f ordnet jedem x-Wert genau einen y-Wert zu.

Funktionsvorschrift:
$$f: x \mapsto 5x + 1$$

Funktionsterm

Definitionsmenge D: alle Zahlen, die man einsetzen darf.

Wertemenge W: alle Zahlen, die herauskommen können.

x nennt man Argument

f(x) nennt man Funktionswert

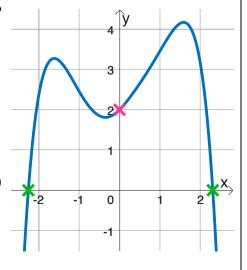
Oft gibt man bei einer Funktion auch die Funktiongleichung an:

$$f(x) = 5x + 1 \qquad \text{oder} \qquad y = 5x + 1$$

Graph einer Funktion

Der Graph einer Funktion f wird G_f genannt.

- Wie zeichnet man einen Graphen?
 → z.B. über eine Wertetabelle
- Schnittpunkte mit den Achsen:
 - mit der y-Achse: Setzte x = 0
 - mit der x-Achse: Setze f(x) = 0(Auch den y-Wert angeben, da ein Punkt immer zwei Koordinaten hat.)
- Nullstellen
 Alle x-Werte, für die gilt: f(x) = 0
- Schnittpunkt zweier Graphen
 Setzte die Funktionsterme gleich und löse nach x auf.



Gleichung

Eine Gleichung verbindet zwei Terme mit einem Gleichheitszeichen.

z.B.
$$x - 5 = 5x + 1$$

Setzt man für die Variable eine Zahl ein und erhält auf beiden Seiten den gleichen Wert (*wahre Aussage*), so ist diese Zahl eine Lösung der Gleichung.

Wie viele Lösungen kann es geben?			
$0 = 1$ $x^2 = -1$	Keine Lösung		
2x = 4 Eine Lösung: $x = 2$			
$x^2 = 4$	Zwei Lösungen: $x_1 = -2$, $x_2 = 2$		
x = x Jede Zahl ist eine Lösung			

Grundmenge *G*: Alle Zahlen, die man für die Variable einsetzen darf. Lösungsmenge *L*: Alle Lösungen.

Äquivalenzumformung: Die Lösung(en) ändern sich nicht:

$$x + 6 = 8 \quad | -6$$

 $x = 2$

Vorsicht: Wenn man z.B. durch \boldsymbol{x} teilt, kann sich die Lösungsmenge ändern.

Bsp: Gib über der Grundmenge $G = \mathbb{N}$ die Lösung(en) der Gleichung an:

$$(x-5)(x+3)x=0$$

$$\rightarrow$$
 $L=\{0;5\}$ da -3 keine natürliche Zahl und damit keine Lösung ist

Lineare Funktionen

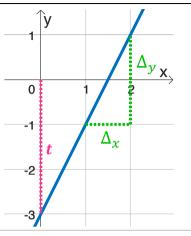
$$f(x) = m \cdot x + t$$

Steigung y-Achsenabschnitt

Wie bestimmt man die Steigung?

→ zeichne ein Steigungsdreieck ein und teile die senkrechte Länge Δ_{ν} durch die waagrechte Länge Δ_r .

$$\boldsymbol{m} = \frac{\Delta_y}{\Delta_x} = \frac{2}{1} = 2$$



Tipp für schnelles Ablesen der Steigung: ",1 nach rechts und m=2 nach oben."

Der Graph einer linearen Funktion ist immer eine **Gerade**.

Besondere Geraden:

- **Negative Steigung: Graph fällt** (z.B. m = -2: 1 nach rechts, 2 nach unten)
- Steigung 0: waagrechte Gerade

Bsp: Bestimme die Gerade durch die Punkte A(-2/4) und B(4/1).

○ Bestimmung der Steigung *m*

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{1 - 4}{4 - (-2)} = \frac{-3}{6} = -\frac{1}{2}$$

o Bestimmung von *t*

$$y = -\frac{1}{2}x + t$$

$$4 = -\frac{1}{2} \cdot (-2) + t$$
Einsetze
$$4 = 1 + t$$
Nach t

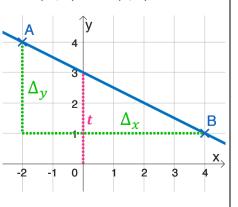
Einsetzen eines Punktes, hier A

$$t = 1 + t$$

$$t = 3$$

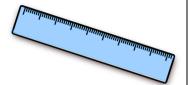
auflösen

$$y = -\frac{1}{2}x + 3$$



Lineare Gleichungen

$$x - 5 = 5x + 1$$



Wie löst man eine lineare Gleichung?

- 1. Vereinfachen (beide Seiten)
- 2. Alle x auf eine Seite.
- 3. Alle **Zahlen** auf die andere Seite.
- 4. Durch die Zahl vor x dividieren.
- 5. Evtl. Probe: Lösung einsetzen

$$7 - 4(x - 2) = 24 - x$$

$$7 - 4x + 8 = 24 - x |+x$$

$$15 - 3x = 24 |-15$$

$$-3x = 9 |: (-3)$$

$$x = -3$$

7 - 4(-3 - 2) = 24 - (-3)27 = 27

Bsp: Prüfe, ob der Punkt C(3/-4) auf der Gerade y = -3x + 5 liegt.

- $-4 = -3 \cdot 3 + 5$ Setze den Punkt in die Geradengleichung ein.
- -4 = -4wahre Aussage \rightarrow der Punkt liegt auf der Gerade.

Lineare Gleichungssysteme

Bsp: (1) x - y = -4

(I)
$$x - y = -4$$

(II) $2x + 2y = 20$

(Oft wie hier mit zwei Gleichungen und zwei Unbekannten)

Einsetzungsverfahren: Löse eine Gleichung nach einer Variable auf:

x = -4 + v

Setze nun statt x in die zweite Gleichung (-4 + y) ein:

(II)
$$2 \cdot (-4 + y) + 2y = 20$$

 $-8 + 2y + 2y = 20 \mid +8$
 $4y = 28 \mid :4$
 $y = 7 \implies x = -4 + y = 3$

(Es gibt auch noch andere Verfahren, mit denen man Lineare Gleichungssysteme lösen kann: z.B. Gleichsetzungsverfahren oder Additionsverfahren.)

Gebrochen-rationale Funktionen

Haben eine Variable im Nenner

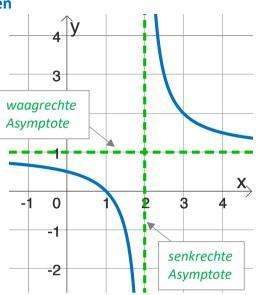
z.B.
$$f(x) = \frac{1}{x-2} + 1$$

Definitionsmenge: $D_f = \mathbb{R} \setminus \{2\}$

Nenner nicht Null

Asymptote: Gerade, der sich der Graph beliebig genau annähert.

- Waagrechte Asymptote v=1
- **Senkrechte** Asymptote x = 2 (nur bei der Definitionslücke)



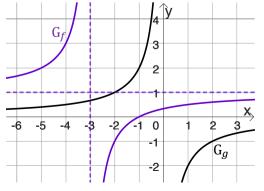
Besonderer Fall: Parameter a, b und c

$$f(x) = \frac{a}{x - b} + c$$

- Verschiebung um b nach rechts
- Streckung um |a| in y-Richtung, Spiegelung an x-Achse für a < 0
- Verschiebung um c nach oben

Bsp: Beschreibe, wie der Graph von $f\colon x\mapsto \frac{-2}{x+3}+1 \ durch$ Verschieben aus dem Graphen von $g\colon x\mapsto \frac{-2}{x}$ hervorgeht.

A: "Der Graph wurde um 3 nach links und um 1 nach oben verschoben."



Bruchgleichungen

(Ziel: Variable aus dem Nenner)

Einfacher Fall (jeweils nur ein Bruch pro Seite)

$$\frac{1}{x+3} = \frac{1}{2x}$$

$$\frac{1}{2x} = \frac{1}{2x}$$

$$\frac{1}{x+3} = \frac{1}{x+3}$$

$$\frac{1}{x+3} = \frac$$

Allgemein

$$\frac{-x}{x+2} + 1 = \frac{1}{x} \qquad | \cdot x(x+2) \qquad \begin{array}{l} \text{mit allen Nennern} \\ \text{multiplizieren} \end{array}$$
$$-x^2 + (x^2 + 2x) = x + 2 \quad | -x$$
$$x = 2$$

Rechenregeln für Bruchterme (wie bei Brüchen)

Brüche addieren/subtrahieren: auf gleichen Nenner bringen, Zähler addieren Brüche multiplizieren: Zähler mal Zähler, Nenner mal Nenner

Brüche dividieren: mit dem Kehrbruch multiplizieren

Doppelbruch

Hauptbruchstrich zu ":" umschreiben

Bsp.
$$\frac{1}{x^{-1}} = \frac{1}{\frac{1}{x}} = 1 : \frac{1}{x} = 1 \cdot \frac{x}{1} = x$$

erst kürzen

dann erweitern

Bsp.
$$\frac{x+1}{x^2+x} + \frac{1}{2x} = \frac{x+1}{x(x+1)} + \frac{1}{2x} = \frac{1}{x} + \frac{1}{2x} = \frac{2}{2x} + \frac{1}{2x} = \frac{3}{2x}$$

Bsp.
$$\frac{-1}{x} = \frac{1}{-x} = -\frac{1}{x}$$
 Wo darf das Minus hin? \rightarrow Zähler, Nenner oder vor den Bruch

Quadratische Funktionen

Bsp: $f(x) = x^2$ Normalparabel $\mathbf{g}(\mathbf{x}) = -\mathbf{x}^2$ (nach unten geöffnet)

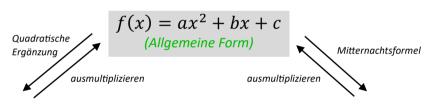
 $h(x) = x^2 + 1$ (1 nach oben verschoben)

 $i(x) = (x-2)^2$ (2 nach rechts verschoben)

 $k(x) = -0.5(x-2)^2 - 1$ Scheitel S(2/-1) -2(Öffnungsfaktor -0.5)

Die Graphen heißen: Parabel

Es gibt drei verschiedene Schreibweisen:



$$f(x) = a(x - d)^{2} + e$$
(Scheitelpunktform)

Vorteil: man sieht den **Scheitel** S(d/e)

 $f(x) = a(x - d)^2 + e$ $f(x) = a(x - x_1)(x - x_2)$ (Nullstellenform)

Vorteil: man sieht die **Nullstellen** x_1 und x_2

Quadratische Ergänzung

Bsp: Bestimme die Scheitelpunktform von $f(x) = x^2 - 6x + 8$.

$$x^2 - 6x + 3^2 - 3^2 + 8 = 0$$
 (Ergänze zur binomischen Formel)
 $(x-3)^2 - 9 + 8 = 0$ \Rightarrow Der Scheitel liegt bei $S(3/-1)$

Quadratische Gleichungen

Allgemeine Form

$$ax^2 + bx + c = 0$$

Lösen durch Mitternachtsformel (geht immer)

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

"Diskriminante"

Es gibt entweder

- zwei Lösungen (D>0),
- eine Lösung (D=0) oder
- keine Lösung (D<0).

Bsp: Löse die Gleichung $0 = x^2 - 3x + 2$.

$$x_{1/2} = \frac{3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{3 \pm 1}{2}$$
 $x_1 = 1$ Zwei Lösungen, $x_2 = 2$ da D>0

Manchmal geht es auch leichter:

Wenn c = 0: Ausklammern!

Bsp:
$$5x^2 - 10x = 0$$

$$x(5x - 10) = 0$$

$$x_1 = 0$$
 $x_2 = 2$

Wenn b = 0: Wurzel ziehen!

Bsp:
$$5x^2 - 10x = 0$$
 Bsp: $3x^2 - 27 = 0$ |+27

$$3x^2 = 27 |: 3$$

 $x^2 = 9 | \sqrt{}$

$$|x| = 3 \implies x = \pm 3$$

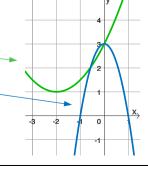
Bsp: Bestimme eine geeignete Gleichung zu den beiden gezeichneten Parabeln.

z.B. Scheitelpunktform:
$$y = \frac{1}{2}(x+2)^2 + 1$$

 $\mathbf{y} = a(x - 1)(x + 1)$ z.B. Nullstellenform:

3 = a(0-1)(0+1)Nullstellen ablesen & Punkt einsetzen, z.B. S(0/3)

y = -3(x-1)(x+1)

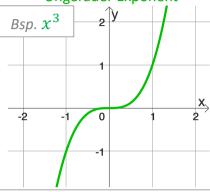


Potenzfunktionen

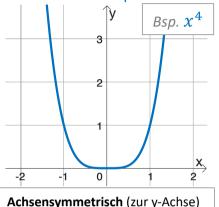
$$f(x) = a \cdot x^{\mathbf{n}}$$

Grad der Funktion

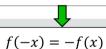
Ungerader Exponent



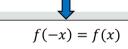
Gerader Exponent



Punktsymmetrisch (zum Ursprung)



10. Klasse



Ganzrationale Funktionen (= Summe von Potenzfunktionen)

$$f(x) = a_n \cdot x^n + \dots + a_1 \cdot x^1 + a_0 x^0$$

Koeffizienten Polynom (vom Grad n: höchster Exponent)

$$2(x-1)(x-3)^{2}$$

faktorisieren (könnt ihr meist nur bis Grad 2)
$$x_1 = 1$$
 $x_2 = 3$ $x_3 = 1$ $x_4 = 1$ $x_5 = 3$ $x_6 = 3$ doppelte NST

→ Bei doppelten (vierfachen...) NST wird die x-Achse nur berührt, sonst geschnitten.

n-te Wurzeln

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

Bspe:
$$8^{\frac{1}{3}} = \sqrt[3]{8} = 2$$
 $\sqrt[6]{5^2} = 5^{\frac{2}{6}} = 5^{\frac{1}{3}}$

$$9^{\frac{1}{2}} = \sqrt[2]{9} = \sqrt{9} = 3$$
 ("Quadratwurzel")

Definitionsmenge Unter der Wurzel darf nichts Negatives stehen

$$Bsp: \quad \sqrt{6-x} \qquad \implies 6-x \ge 0 \qquad \implies x \le 6$$

$$\Rightarrow$$
 6 - $x \ge 0$

$$\Rightarrow x \leq 6$$

Vorsicht: Wenn unter der Wurzel eine Variable steht, muss man eine Fallunterscheidung machen:

Bsp:
$$x^2 = 25 | \sqrt{} \implies |x| = 5 \implies x = \pm 5$$

$$\Rightarrow |x| = 5$$

$$\Rightarrow x = \pm 5$$

Rechnen mit Wurzeln

Vereinfachen bei · und :

$$\sqrt{27} \cdot \sqrt{3} = \sqrt{27 \cdot 3} = \sqrt{81} = 9$$

$$\frac{\sqrt{27}}{\sqrt{3}} = \sqrt{\frac{27}{3}} = \sqrt{9} = 3$$

Achtung: bei + und - geht das nicht!

$$\sqrt{9} + \sqrt{16} \neq \sqrt{9 + 16}$$

= 3 + 4 = 7 = $\sqrt{25}$ = 5

Tipp: schreibe jede Wurzel als Potenz & wende Potenzgesetze an:

$$\sqrt{x\cdot\sqrt{x}} = x^{\frac{1}{2}}\cdot x^{\frac{1}{4}} = x^{\frac{3}{4}}$$

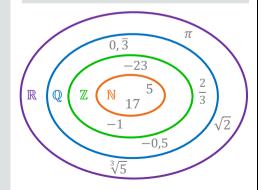
Zahlenmengen

N: Natürliche Zahlen

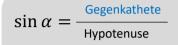
Z: Ganze Zahlen

①: Rationale Zahlen

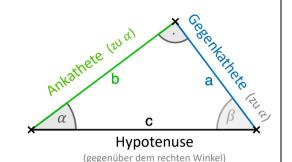
R: Reelle Zahlen (rationale & irrationale)



Am rechtwinkligen Dreieck



$$\cos \alpha = \frac{\text{Ankathete}}{\text{Hypotenuse}}$$



$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\text{Gegenkathete}}{\text{Ankathete}}$$

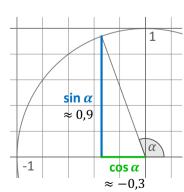
Bsp. Für das obere Dreieck gelte: a = 3, c = 5. Bestimme β .

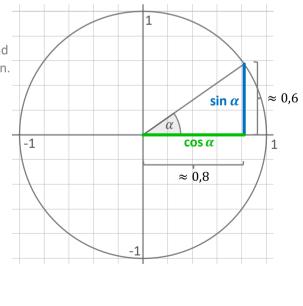
$$\cos \beta = \frac{a}{c}$$
 Taschenrechner: $\cos^{-1} \frac{3}{5} \approx 53,13^{\circ}$

Am Einheitskreis (Radius 1)

Der Radius ist 1, daher fällt bei sin und cos der Nenner weg und man kann den Wert gut ablesen.

Das geht sogar für Winkel größer als 90°, z.B. $\alpha = 110^\circ$:





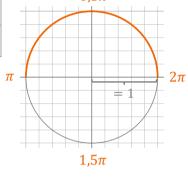
Bogenmaß

α (Gradmaß)	90°	180°	270°	360°
x (Bogenmaß)	0.5π	π	$1,5\pi$	2π

Umrechnung

$$\alpha = \frac{x}{2\pi}$$
Anteil

$$x = \frac{\alpha}{360^{\circ}} \cdot 2\pi$$



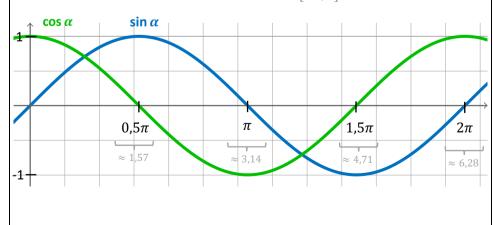
Taschenrechner Setup: Deg steht für Gradmaß und Rad für Bogenmaß

Degree Radiant

Sinus- und Kosinus-Funktion

$$D = \mathbb{R}$$

$$W = [-1; 1]$$



Exponentialfunktion

$$f(x) = \mathbf{a}^x$$

$$D = \mathbb{R}$$
$$W = \mathbb{R}^+$$

Wachstumsfaktor

Bsp: Du legst 1€ mit einem festen Zinssatz an. Nach 50 Jahren sind es 45.26€. Wie hoch ist der Zinssatz?

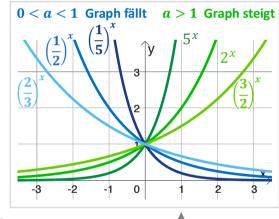
$$a^{50} = 45,26$$
 $\begin{vmatrix} 50 \\ 1 \end{vmatrix}$ \Rightarrow Der Zinssatz beträat etwa 10%.

Eigenschaften

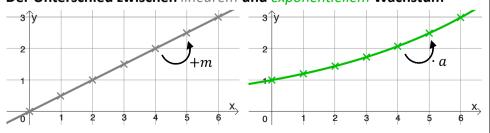
- Alle Graphen gehen durch den Punkt (0/1), da $a^0 = 1$.
- Es sind immer zwei Graphen achsensymmetrisch zur y-Achse: a^x und $\left(\frac{1}{a}\right)^x$.

Bsp: Die Graphen von 2^x und $\left(\frac{1}{2}\right)^{x}$ sind symmetrisch.

Tipp: Hier liest man den Wachstumsfaktor a am Graphen leicht ab.



Der Unterschied zwischen linearem und exponentiellem Wachstum



Exponentialgleichung

$$2^{x} = 8$$

Logarithmus

$$log_2(8) = x$$

Lies: "Logarithmus von 8 zur Basis 2"

Besonderheit: log_{10} kürzt man ab: lg

Bsp: $log_{10}(100) = lg(100) = 2$

 3^x

 $2 \cdot 3^x$

Logarithmus-Trick: Wie bekommt man das x aus dem Exponenten?

$$3^{2x} = 5 \mid \lg()$$

Auf beiden Seiten Ig anwenden.

$$\lg\left(3^{2x}\right) = \lg\left(5\right)$$

 $\lg(3^{2x}) = \lg(5)$ Den Exponenten 2x vor den \lg ziehen.

$$2x \cdot \lg(3) = \lg(5)$$
 |: $\lg(3)$

$$2x = \frac{\lg{(5)}}{\lg{(3)}}$$
 |: 2

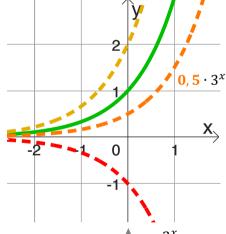
$$x \approx 0.73$$

Exponentialfunktion mit Parameter

$$f(x) = \underset{\blacktriangle}{\overset{b}{\triangleright}} \cdot a^x$$

Parameter (oft auch "Anfangswert")

- Bewirkt eine Streckung in y-Richtung
- Für b < 0: Spiegelung an x-Achse



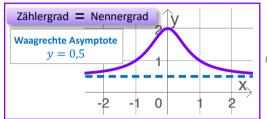
Tipp: Hier liest man den Parameter **b** am Graphen leicht ab.

Bsp: Die Population einer bedrohten Tierart schrumpft jedes Jahr um 20%. Nach 3 Jahren sind es noch 128 Tiere. Wie viele waren es am Anfang (Anfangswert)?

$$b \cdot 0.8^3 = 128 \mid :0.8^3$$

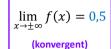
$$b = 250$$

⇒ Anfangs waren es 250 Tiere.



$$f(x) = \frac{1x^2 + 2}{2x^2 + 1}$$

Tipp: Dieser Quotient ergibt die Asymptote: $\frac{1}{2}$ oder 0,5



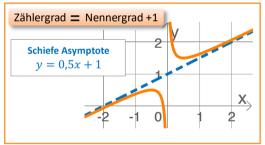
Sprich: "Limes für x aeaen plus/minus unendlich von f(x)"

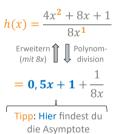
$$g(x) = \frac{x^1}{x^2 + 0.5}$$

Tipp: Die Asymptote ist immer: y = 0

$$\lim_{x \to \pm \infty} g(x) = 0$$

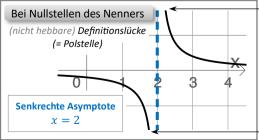
(konvergent)





$\lim_{x \to -\infty} h(x) = -\infty$ $\lim_{x\to+\infty}h(x)=+\infty$ (divergent)

Grenzwerte an einer Stelle $(x \rightarrow x_0)$



$$k(x) = \frac{8}{5x - 10}$$

Tipp: Setze Werte knapp unter und über der Definitionslücke ein, hier: 1.999 und 2.001

Rechtsseitiger Grenzwert d.h. von rechts an die 2

$$\lim_{x \to 2+} k(x) = +\infty$$

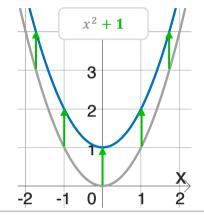
 $\lim_{x \to \infty} k(x) = -\infty$

Linksseitiger Grenzwert d.h. von links an die 2

Verschieben

... in y-Richtung

(11. KLASSE)

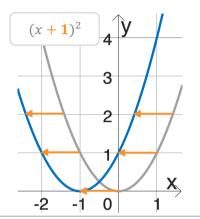


f(x) + c Verschieben nach **oben**

f(x) - c Verschieben nach **unten**

Für c > 0

... in x-Richtung

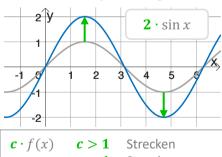


f(x + c) Verschieben nach links

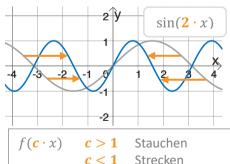
f(x-c) Verschieben nach rechts

Strecken & Stauchen

... in y-Richtung



c < 1 Stauchen

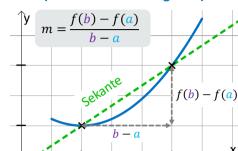


Für *c* < 0

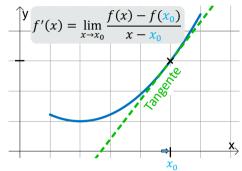
Spiegeln an x-Achse -f(x)

Spiegeln an y-Achse

Differenzenquotient



Differentialquotient (= momentane/lokale Änderungsrate)



Steigung der Tangente

Ableitung

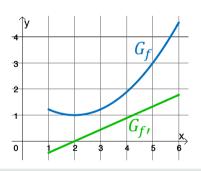
Differentialquotient

Steigungswinkel α (an einer Stelle x_0)

$$\rightarrow$$
 tan $\alpha = f'(x_0)$

Ableitungsfunktion

→ Wenn es keinen "Knick" gibt, kann man an jeder Stelle ableiten und damit die Ableitungsfunktion f' bilden.



Ableitungsregeln

Potenzregel
$$f(x) = x^n \implies f'(x) = n \cdot x^{n-1}$$

Bsp:
$$f(x) = x^3 \implies f'(x) = 3 \cdot x^2$$

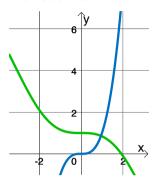
Faktorregel
$$f(x) = \mathbf{c} \cdot g(x) \implies f'(x) = \mathbf{c} \cdot g'(x)$$

Bsp:
$$f(x) = 7 \cdot x^4$$
 \Rightarrow $f'(x) = 7 \cdot 4x^3$

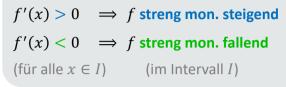
Summerregel
$$f(x) = g(x) + h(x) \implies f'(x) = g'(x) + h'(x)$$

Bsp:
$$f(x) = x^3 + x$$
 $\implies f'(x) = 3x^2 + 1$

Monotonie



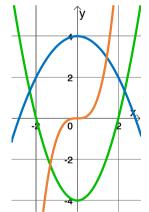
Kriterium



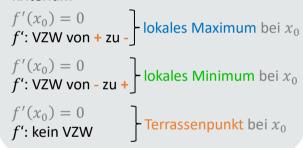
Achtung: Der Kehrsatz ← gilt nicht:

Bsp: Für x^3 gilt: f'(x) = 0, trotzdem ist die Funktion überall str. mon. steigend

Extremstellen

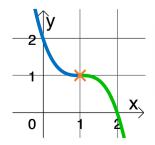


Kriterium



Maximum ⇒ Graph hat Hochpunkt Minimum ⇒ Graph hat Tiefpunkt

Krümmung und Wendestellen



Kriterium

$$f''(x) > 0 \implies f$$
 linksgekrümmt $f''(x) < 0 \implies f$ rechtsgekrümmt (für alle $x \in I$) (im Intervall I)

Bei Krümmungswechsel: Wendepunkt

Begriffe (8. Klasse)

Bsp: Würfelwurf

Ergebnis ω: Versuchsausgang von Zufallsexperimenten	$\omega_1 = 1$ $\omega_2 = 2 \qquad \dots$		
Ergebnismenge Ω : Menge aller Ergebnisse	$\Omega = \{1; 2; 3; 4; 5; 6\}$ $ \Omega = 6$ "Mächtigkeit" von Omega		
Ereignis: Teilmenge der Ergebnismenge	$A = \{2; 4; 6\}$ ("gerade Zahl würfeln")		
Gegenereignis \overline{A} : Enthält alle Ergebnisse, die nicht in A enthalten sind.	$ar{A} = \{1;3;5\}$ ("ungerade Zahl würfeln")		

Ω: großes Omega ω: kleines Omega

Wahrscheinlichkeit (8. Klasse)

Laplace-Experiment		Nicht-Laplace-Experiment	
	isse sind gleich wahrscheinlich Anzahl günstige Ergebnisse	Die Wahrscheinlichkeit kann nur über die relative Häufigkeit angenähert werden	
P(E) =	Anzahl mögliche Ergebnisse		
		Bsp: asymmetrischer Würfel Sehr viele Wiederholungen nötig, um	
Bs	p: Zufallsgeneratoren	Wahrscheinlichkeit zu bestimmen	

Mengen und Vierfeldertafeln (9. Klasse)

Schnittmenge $A \cap B$

Vereinigungsmenge $A \cup B$

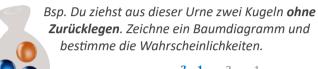
	В	$ar{B}$	
A	$P(A \cap B)$	$P(A \cap \overline{B})$	P(A)
$ar{A}$	$P(\bar{A} \cap B)$	$P(\bar{A} \cap \bar{B})$	$P(\bar{A})$
	P(B)	$P(\bar{B})$	1

Vierfeldertafel mit Wahrscheinlichkeiten

Pfadregeln und Baumdiagramme (10. Klasse)

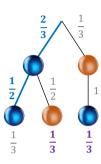
- 1. Pfadregel: Entlang eines Pfades multiplizieren
- 2. Pfadregel: Mehrere Pfade addieren

(8.-11. KLASSE)



$$P(\text{"zwei blaue"}) = \frac{2}{3} \cdot \frac{1}{2} = \frac{2}{6} = \frac{1}{3}$$

 $P(\text{"zwei verschiedenfarbige"}) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$



Bedingte Wahrscheinlichkeit & stoch. Unabhängigkeit (11. Klasse)

P_A(B) ist die Wahrscheinlichkeit **von B unter der Bedingung A**

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Zwei Ereignisse A und B heißen (stochastisch) unabhängig, wenn gilt: sonst: abhängig

unabhängig, wenn gilt: $P(A \cap B) = P(A) \cdot P(B)$

Bsp. Bei einer Umfrage in der Sigena-Oberstufe wird gefragt:

A: "hast du ein Auto?"

B: "trägst du eine Brille?"

			_
	В	$ar{B}$	
► A	5	5	10
$ar{A}$	35	55	90
	40	60	100

Vierfeldertafel mit Häufigkeiten

a) Erkläre im Sachzusammenhang und bestimme:

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.05}{0.1} = 50\%$$

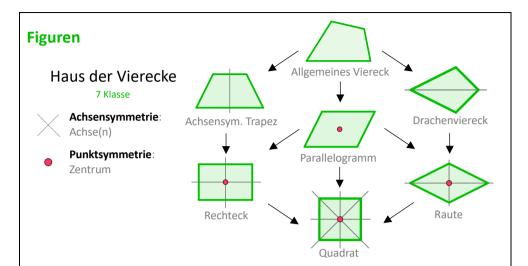
Die Wahrsch., dass jemand von den Autobesitzern eine Brille trägt, ist 50%.

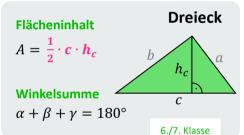
b) Prüfe, ob A und B unabhängig sind.

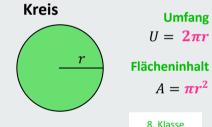
$$P(A) \cdot P(B) = \frac{10}{100} \cdot \frac{40}{100} = 0.04$$

$$P(A \cap B) = \frac{5}{100} = 0.05$$

Die Ereignisse A und B sind abhängig.







 \Rightarrow rechter Winkel bei C

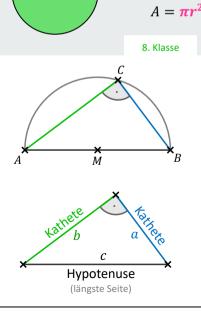
(Die Umkehrung gilt auch) 7. Klasse

Satz des Pythagoras

Dreieck ist rechtwinklig

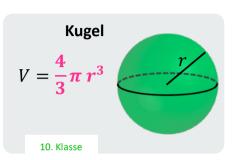
$$\Rightarrow a^2 + b^2 = c^2$$

(Die Umkehrung gilt auch) 9. Klasse



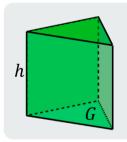
Körper





Bsp: Um welchen Faktor vergrößert sich das Volumen einer Kugel, deren Radius verdoppelt wird?

Es verachtfacht sich, da $V = \frac{4}{3}\pi (2r)^3 = 8 \cdot \frac{4}{3}\pi r^3$.

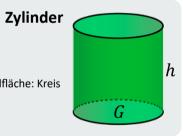


Prisma

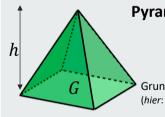
 $V = G \cdot h$

Grundfläche: Vieleck (hier: Dreiecksprisma)

Grundfläche: Kreis

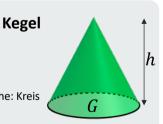


8. Klasse



Pyramide

Grundfläche: Vieleck (hier: Viereckspyramide) Grundfläche: Kreis



10. Klasse

Bsp: Bestimme den Radius eines Kegels, dessen Höhe 5m und Volumen $20m^3$ beträgt.

$$20m^2=rac{1}{3}\cdot(\pi r^2)\cdot 5m$$
 $\pi r^2=60m^2\colon 5m$ $r^2=12m^2\colon \pi$ $r\approx 1,95m$ Kreisfläche

RECHNEN MIT VARIABLEN

PRODUKTE

Produkt

Sortieren:

$$y \cdot 2y \cdot (-3x) = -6 xy^2$$
Vorzeichen Zahlen Variablen

Potenzen

$$x^{m} \cdot x^{n} = x^{m+n}$$

$$x^{m} \cdot y^{m} = (x \cdot y)^{m}$$

$$(x^{m})^{n} = x^{m \cdot n}$$

$$7^{3} \cdot 7^{2} = 7^{5}$$

$$5^{3} \cdot 2^{3} = (5$$

$$(5^{3})^{2} = 5^{6}$$

$$x^{m} \cdot x^{n} = x^{m+n}$$

$$x^{m} \cdot y^{m} = (x \cdot y)^{m}$$

$$(x^{m})^{n} = x^{m \cdot n}$$

$$7^{3} \cdot 7^{2} = 7^{5}$$

$$5^{3} \cdot 2^{3} = (5 \cdot 2)^{3}$$

$$(5^{3})^{2} = 5^{6}$$

Tipp: ausschreiben:
$$(3x)^2 = 3x \cdot 3x$$

$$(3x)^{-2} = \frac{3x \cdot 3x}{3x \cdot 3x}$$

SUMMEN

Summe: geordnet

gleichartige zusammenfassen $5ab - a^2b + ah$

$$5ab - a^2b + ab$$

ightharpoonup gleiche Variablen & Exponenten $=6ab-a^2b$

$$=6ab-a^2b$$

Summe: ungeordnet

Tipp: einkreisen & sortieren

$$(m \cdot 5n^4) - (3n^4 \cdot m)$$

Danach wieder gleichartige zusammenfassen

$$= 5mn^4 - 3mn^4$$
$$= 2mn^4$$

KI AMMERN AUFLÖSEN

+ Klammer

Plus:

Plus:
$$2 + (x - 5) = 2 + x - 5$$

Minus: (Zeichen ändern) $2 - (x - 5) = 2 - x + 5$

Distributivgesetz

ausmultiplizieren

$$2x \cdot (5 - 3x) = 10x - 6x^2$$

ausklammern

Summen multiplizieren

$$(6x - 5) \cdot (-1 + y)$$

$$= -6x + 6xy + 5 - 5y$$

Binomische Formeln

Plusformel
$$(a + b)^2 = a^2 + 2ab + b^2$$

Minusformel
$$(a - b)^2 = a^2 - 2ab + b^2$$

 $5 - 2 \cdot (4 - 1)$

Plusminusformel
$$(a + b)(a - b) = a^2 - b^2$$

Vorrangregel

Klammer vor **Punkt** vor **Strich**
$$= 5 - 2 \cdot 3$$

$$= 5 - 2 \cdot 3$$

= 5 - 6

(bei gleichen Zeichen: von links nach rechts)

$$= 5 - 6$$

= -1

